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Test of semiclassical amplitudes for quantum ray-splitting systems
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R. Blümel†

Department of Physics, Wesleyan University, Middletown, Connecticut 06459-0155
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We compute semiclassically and numerically the weights of ray-splitting orbits in the density of states of a
rectangular and an annular ray-splitting billiard. The agreement between the semiclassical and the numerical
results is very good, confirming the necessity of including reflection and transmission coefficients of non-
Newtonian ray-splitting orbits in semiclassical expressions for the density of states of ray-splitting systems.
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Ray splitting occurs in all wave systems where the wa
length is large in comparison with the range over which
potential changes. Thus ray splitting is a phenomenon th
important in many fields of physics. Examples are read
found: In optics ray splitting occurs at the interface betwe
two dielectrica of different indices of refraction. In acousti
ray splitting occurs, e.g., when a wave generated by an ea
quake hits a fault line. The investigation of ray splitting w
initiated by Couchmanet al. @1#, who studied ray splitting in
the field of acoustics and quantum chaos. An important
pect in quantum ray-splitting systems is that the underly
classical mechanics is non-Newtonian and nondetermin
with above-barrier reflection@1–6#. Experimental evidence
for the signatures of non-Newtonian orbits in ray-splitti
systems was given by Sirkoet al. @7# and Bauchet al. @8#.
Sirko et al. @7# identified the signatures of non-Newtonia
orbits in the spectrum of a Teflon-loaded microwave cav
Bauchet al. @8# amplified the results of@7# and in addition
investigated ray splitting in a metal-loaded microwave c
ity. Modifications of Gutzwiller’s trace formula@1# and
Bogomolny’s transfer operator@2# have been suggested
order to accommodate ray splitting in a semiclassical c
text. The focus of this paper is a numerical test of the mo
fied Bogomolny transfer operator for ray-splitting syste
@2# given by
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where the summation is over all Newtonian and no
Newtonian orbitsj of energyE with starting pointq8 and
end-pointq in the Poincare´ surface of section,Sj (q,q8,E) is
the classical action of orbitj ,d j is its phase and@1#
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where% j (t j ) are the number of reflections~transmissions!
encountered by orbitj, andr i j is the reflection coefficient a
the i th reflection. The advantage of the Bogomolny trans
operator is that it can be used for stable, marginally sta
and unstable orbits in the same way. In terms of the Bo
molny transfer operator the fluctuating part of the density
states reads@2#
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r̃s~E!. ~3!

It is well known that the Fourier transform of the density
states,

F~ l !5E r̃~E!exp~2 i l AE!dE, ~4!

exhibits peaks at the classical actions of classical perio
orbits @9#. This means that Fourier-transforming~3! and the
quantum spectrum of a ray-splitting billiard analytically an
numerically allows us to test the weightsAj of ray-splitting
orbits. We performed this test focusing on the simplest n
Newtonian ray-splitting orbits of two ray-splitting billiards,
rectangular and an annular ray-splitting billiard. Dirichl
boundary conditions are used in both cases.

The rectangular ray-splitting billiard is shown in Fig. 1.
consists of two parts, one held at potentialV50, the other at
potentialV5V0. The reflection coefficient of the dashed-lin
orbit in Fig. 1, reflected off the ray-splitting boundary sep
rating the two potential regions, is given by

r 5
AE cosb2AE2V0 cosb8

AE cosb1AE2V0 cosb8
, ~5!

whereb is the angle of incidence and

sin~b!5A12V0 /E sin~b8!. ~6!

Sincer is energy dependent, Fourier-transformingr̃(E) ac-
cording to Eq.~4! means that the coefficientsAj , too, are
affected by the integration over the energyE. This way,
therefore, it is not possible to determineAj correctly. The use
7228 ©1999 The American Physical Society



ie

ite

Eq
of
he

s
e
ws

-
on

We
ive
ult

us
mit

with
ith

its

It
u

el

d
of

e
ntial

lar
a-
in
d
tes
p-

PRE 59 7229BRIEF REPORTS
of scaled spectroscopy, i.e., to calculate and Four
transform quantal spectra with constant ratioh5V0 /E,
solves this problem. This can be seen explicitly if we rewr
Eq. ~5! usingh5V0 /E:

r 5
cosb2k cosb8

cosb1k cosb8
, ~7!

wherek5A12h. Performing the trace overT, only the pe-
riodic orbits starting atq and ending atq85q survive. Their
contribution to Eq.~3! is given by

r̃1~E!5
cur u

Aap2pk3/2F1

4
sin~k l113p/4!

1
1

2
kl1 cos~kl113p/4!G , ~8!

wherea andc are dimensions of the billiard~see Fig. 1!, k
5AE, l 152a, and

r 5
12k

11k
. ~9!

The dashed line in Fig. 2 shows the Fourier transform of
~8!. The smooth line in Fig. 2 is the Fourier transform
r̃(E) of the rectangular ray-splitting billiard computed on t
basis of the first 20 000 energy levels fora51, b58, c

FIG. 1. Rectangular ray-splitting billiard with a step potential.
consists of a rectangular domain divided into two rectangular s
domains held at constant potentialsV50 andV5V0, respectively.
An orbit originating at pointq8 and terminating at pointq is also
shown.

FIG. 2. Fourier transform of the fluctuating part of the lev

density r̃(E) for the rectangular ray-splitting billiard. The dashe
line is the analytical result. The full line is the Fourier transform
the numerically obtained quantum spectrum.
r-

.

58, and h50.5. As expected, both Fourier transform
peak atl 152a52. Although a small deviation between th
analytical and the numerical results is visible, Fig. 2 sho
convincingly that the reflection probabilityr'0.1716
computed from Eq.~9! is semiclassically valid. Further in
vestigation showed that the deviation in Fig. 2 depends
the number of energy levels included in the calculations.
found numerically that to a very good accuracy the relat
deviation of the analytical result from the numerical res
tends to zero according to 1/Akmax, whereEmax5kmax

2 is the
largest energy level included in the Fourier transform. Th
the analytical and the numerical results agree in the li
kmax→`.

The annular ray-splitting billiard@10# consists of two
nested circular domains, the inner one at potentialV5V0,
the outer one at potentialV50 ~see Fig. 3!. In order to
determine peak heights we calculated 800 energy values
both positive and negative parity for the scaled problem w
h50.5 and obtained the level densityr̃(E). The Fourier
transform ofr̃(E) in the range 0, l ,2 is shown as the full
line in Fig. 4. The letters labeling the peaks refer to the orb
shown in Fig. 3. In the range 0, l ,2 only non-Newtonian
orbits exist. The orbit labeled ‘‘f ’’ has optical path lengthl
'3.014, outside of the chosenl range.

We focus now on the periodic orbit labeled ‘‘b’’ in Fig. 3.

b-
FIG. 3. The annular ray-splitting billiard together with som

short non-Newtonian orbits. The shaded areas are held at pote
V5V0, the white areas are at zero potential.

FIG. 4. Fourier transform of 800 energy levels of the annu
ray-splitting billiard, including levels with both positive and neg
tive parity ~full line!. The letters at the peaks refer to the orbits
Fig. 3. For 0, l ,2 only non-Newtonian orbits occur. The dashe
line corresponds to the Fourier transform of the density of sta
calculated analytically with the Bogomolny transfer operator a
proach taking only the orbit ‘‘b’’ of Fig. 3 into account.
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Its contribution to the fluctuating part of the density of sta
is given by

r̃2~E!5
aAl 2ur u2

A2p2k3/2F1

4
sin~kl213p/4!

1
1

2
kl2 cos~kl213p/4!G , ~10!

wherea is the radius of the inner circle andl 254ak. Be-
cause orbit ‘‘b’’ hits the ray-splitting boundary twice, its
weight is ur u2'0.029 44, wherer 5(k21)/(k11). The
Fourier transform of Eq.~10! is shown as the dashed line
Fig. 4. The agreement between the analytically and num
cally computed peak heights is very good. The deviation
. A

E.
s

ri-
f

the analytical result from the numerical result is again e
plained by the finite number of energy levels included in t
calculations.

Summarizing, we calculated analytically the weights
simple non-Newtonian ray-splitting orbits in the Fouri
transform of the spectra of two different ray-splitting b
liards and compared the analytical results with the weig
obtained from the Fourier transform of numerically com
puted spectra. The analytically and the numerically cal
lated weights are in excellent agreement. Thus, within
scope of our checks, the ray-splitting modification of Bog
molny’s transfer operator proposed in@2# is semiclassically
valid.
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