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Test of semiclassical amplitudes for quantum ray-splitting systems
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We compute semiclassically and numerically the weights of ray-splitting orbits in the density of states of a
rectangular and an annular ray-splitting billiard. The agreement between the semiclassical and the numerical
results is very good, confirming the necessity of including reflection and transmission coefficients of non-
Newtonian ray-splitting orbits in semiclassical expressions for the density of states of ray-splitting systems.
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Ray splitting occurs in all wave systems where the wavewhereg; (7;) are the number of reflectiorigransmissions
length is large in comparison with the range over which theencountered by orbjt andr;; is the reflection coefficient at
potential changes. Thus ray splitting is a phenomenon that ithe ith reflection. The advantage of the Bogomolny transfer
important in many fields of physics. Examples are readilyoperator is that it can be used for stable, marginally stable,
found: In optics ray splitting occurs at the interface betweerand unstable orbits in the same way. In terms of the Bogo-
two dielectrica of different indices of refraction. In acoustics molny transfer operator the fluctuating part of the density of
ray splitting occurs, e.g., when a wave generated by an eartlstates readf?]
guake hits a fault line. The investigation of ray splitting was
initiated by Couchmaset al.[1], who studied ray splitting in -
the field of acoustics and quantum chaos. An important as- P(E)— Z
pect in quantum ray-splitting systems is that the underlying
classical mechanics is non-Newtonian and nondeterministig js well known that the Fourier transform of the density of
with above-barrier reflectiofl—6]. Experimental evidence gstates,
for the signatures of non-Newtonian orbits in ray-splitting
systems was given by Sirket al. [7] and Bauchet al. [8]. ~ _

Sirko et al. [7] identified the signatures of non-Newtonian F(I):j p(E)exp(—il VE)dE, (4)
orbits in the spectrum of a Teflon-loaded microwave cavity.

Bauchet al. [8] amplified the results of7] and in addition exhibits peaks at the classical actions of classical periodic
investigated ray splitting in a metal-loaded microwave cav-orbits[9]. This means that Fourier-transformii® and the

ity. Modifications of Gutzwiller's trace formuld1] and quantum spectrum of a ray-splitting billiard analytically and
Bogomolny’s transfer operatd®2] have been suggested in numerically allows us to test the weights of ray-splitting
order to accommodate ray splitting in a semiclassical conerbits. We performed this test focusing on the simplest non-
text. The focus of this paper is a numerical test of the modiNewtonian ray-splitting orbits of two ray-splitting billiards, a
fied Bogomolny transfer operator for ray-splitting systemsrectangular and an annular ray-splitting billiard. Dirichlet
[2] given by boundary conditions are used in both cases.

The rectangular ray-splitting billiard is shown in Fig. 1. It

oo
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JETT(E)P=——-3 2 ps(E). (3
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, _2 r?Sj(q,q’,E)’ 12 consists of two parts, one held at potentat 0, the other at
T(a.a".B)= ~ ik 999’ ‘ potentialV=V,. The reflection coefficient of the dashed-line
orbit in Fig. 1, reflected off the ray-splitting boundary sepa-
x e(ilmSj(a.q"E)+i5; (1)  rating the two potential regions, is given by
where the summation is over all Newtonian and non- \/Ecosﬂ— VE—Vcosg’ 5
Newtonian orbitsj of energyE with starting pointq’ and r= A
S L . . +JVE—
end-pointq in the Poincareurface of sectionS;(q,q’,E) is \/ECOSB E—Vocosp
the classical action of orbjt, §; is its phase anfll] where 3 is the angle of incidence and
2j 7j . .
=y1-V,/E .
= .1:[1 |r”|2Hk1_[1 (1_|rkj|2)} 2) sin(B) o/Esin(B’) (6)
Sincer is energy dependent, Fourier-transformindE) ac-
cording to Eq.(4) means that the coefficients; , too, are
*Electronic address: Achim.Kohler@gis.sysdeco.no affected by the integration over the enerBy This way,
"Electronic address: rblumel@wesleyan.edu therefore, it is not possible to determiAecorrectly. The use
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FIG. 1. Rectangular ray-splitting billiard with a step potential. It

consists of a rectangular domain divided into two rectangular sub-

domains held at constant potentidls-0 andV=V,, respectively.
An orbit originating at pointg’ and terminating at poing is also
shown.
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FIG. 3. The annular ray-splitting billiard together with some
short non-Newtonian orbits. The shaded areas are held at potential
V=V, the white areas are at zero potential.

of scaled spectroscopy, i.e., to calculate and Fourier=8 and 7=0.5. As expected, both Fourier transforms

transform quantal spectra with constant ratic=V,/E,

peak atl;=2a=2. Although a small deviation between the

solves this problem. This can be seen explicitly if we rewrite@nalytical and the numerical results is visible, Fig. 2 shows

Eq. (5) using n=V,/E:

o CcosB— k cosp 0

cospB+ kcosp’

where k= \1— 7. Performing the trace ové¥, only the pe-
riodic orbits starting at| and ending at|’ = q survive. Their
contribution to Eq(3) is given by

clr|

Vam2mk3?

1
+§kllcos(kll+3w/4)},

- 1
p1(E)= 7 Sin(k 1+ 3m/4)

)

wherea and c are dimensions of the billiar(see Fig. 1, k
=+E, I;=2a, and

1-«
T 14k

r

9

convincingly that the reflection probabilityr~0.1716
computed from Eq(9) is semiclassically valid. Further in-
vestigation showed that the deviation in Fig. 2 depends on
the number of energy levels included in the calculations. We
found numerically that to a very good accuracy the relative
deviation of the analytical result from the numerical result
tends to zero according to vKma, WhereE na=Kaay is the
largest energy level included in the Fourier transform. Thus
the analytical and the numerical results agree in the limit
Kimax—%-

The annular ray-splitting billiard10] consists of two
nested circular domains, the inner one at potentialV,
the outer one at potentiaf=0 (see Fig. 3 In order to
determine peak heights we calculated 800 energy values with
both positive and negative parity for the scaled problem with
7=0.5 and obtained the level densip(E). The Fourier
transform ofp(E) in the range &1<2 is shown as the full
line in Fig. 4. The letters labeling the peaks refer to the orbits
shown in Fig. 3. In the range<0l <2 only non-Newtonian
orbits exist. The orbit labeledf” has optical path length
~3.014, outside of the chosémange.

The dashed line in Fig. 2 shows the Fourier transform of Eq. We focus now on the periodic orbit labele®™ in Fig. 3.

(8). The smooth line in Fig. 2 is the Fourier transform of

(E) of the rectangular ray-splitting billiard computed on the
basis of the first 20000 energy levels far=1, b=8, ¢
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FIG. 2. Fourier transform of the fluctuating part of the level
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FIG. 4. Fourier transform of 800 energy levels of the annular
ray-splitting billiard, including levels with both positive and nega-
tive parity (full line). The letters at the peaks refer to the orbits in
Fig. 3. For 0<I<2 only non-Newtonian orbits occur. The dashed

densityp(E) for the rectangular ray-splitting billiard. The dashed line corresponds to the Fourier transform of the density of states
line is the analytical result. The full line is the Fourier transform of calculated analytically with the Bogomolny transfer operator ap-
the numerically obtained quantum spectrum. proach taking only the orbit " of Fig. 3 into account.
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Its contribution to the fluctuating part of the density of statesthe analytical result from the numerical result is again ex-

is given by plained by the finite number of energy levels included in the
calculations.

~ aVir|2[1 Summarizing, we calculated analytically the weights of

Pz(E)Z\/Z—Tkg,Z{ZSW\(k|z+3W/4) simple non-Newtonian ray-splitting orbits in the Fourier

transform of the spectra of two different ray-splitting bil-

1 liards and compared the analytical results with the weights
+=kl, cogkl,+ 377/4)}, (100  obtained from the Fourier transform of numerically com-

2 puted spectra. The analytically and the numerically calcu-
lated weights are in excellent agreement. Thus, within the
scope of our checks, the ray-splitting modification of Bogo-
molny’s transfer operator proposed [ig] is semiclassically
valid.

wherea is the radius of the inner circle arld=4a«x. Be-
cause orbit ‘b” hits the ray-splitting boundary twice, its
weight is |r|?~0.029 44, wherer=(x—1)/(x+1). The
Fourier transform of Eq(10) is shown as the dashed line in
Fig. 4. The agreement between the analytically and numeri- The authors are grateful for financial support from the
cally computed peak heights is very good. The deviation oDeutsche Forschungsgemeinschaft.
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